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Case 3.2: Turbulent Flow over the DPW IIl Wing
Alone

Summary of Results
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Case description

@ Objective:
e Test high-order methods in turbulent transonic flow in three
dimensions.
o Siiff discrete system poses a challenge for the nonlinear solver.
o Outputs of interest are lift and drag.
@ Flow and boundary conditions:
o M, =0.76ata=0.5°
e Re =5 x 10° based on ¢.; = 197.556, fully turbulent.
o Adiabatic no-slip wall, symmetry, characteristics-based farfield.
@ Gas properties:
o vy=1.4and Pr=0.71.
o Sutherland’s law for viscosity.
@ SA or kw suggested for turbulence modeling.
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Geometry and provided mesh

@ 29310 (coasest) cubic hexas generated via agglomeration.
@ Original geometry, i.e. blunt trailing edge.

P: 0.7 09 1.1
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Participants codes and meshes

@ University of Wyoming:
@ Spalart-Allmaras (ICCFD7 version) turbulence model.
e DG, Lagrange basis, tensor-product on reference domain.
e Roe solver for inviscid flux, SIP for viscous discretization.
@ Backward-Euler with exact Jacobian, f{GMRES linear solver.
o Uniform p-refinement on HOW mesh (various artificial viscosity
parameters).
@ Runs performed on 1024 Sandybridge cores.
@ University of Michigan:
Spalart-Allmaras (ICCFD7 version) turbulence model.
DG, Lagrange basis, tensor-product on reference domain.
Roe solver for inviscid flux, BR2 for viscous discretization.
CPTC, relaxed line-search, with in-house GMRES and line-Jacobi
preconditioner.
Isotropic h, and hp-adaptation and uniform h and p refinement.
HOW initial mesh.
o Runs performed on 240 Westmere cores.
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Drag convergence versus DOFs
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Drag convergence versus DOFs - zoom **
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Lift convergence versus DOFs
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Conclusions

@ We seem to disagree on the output values.

@ Possible causes: geometry representation, artificial viscosity
term...

@ This case is a good exercise for solvers.
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